3.3V 100/133 MHz Differential 1:19 HCSL Clock ZDB/Fanout Buffer for PCle[®]

Description

The NB3N1900K differential clock buffers are designed to work in conjunction with a PCIe compliant source clock synthesizer to provide point—to—point clocks to multiple agents. The device is capable of distributing the reference clocks for Intel[®] QuickPath Interconnect (Intel QPI), PCIe Gen1, Gen2, Gen3. The NB3N1900K internal PLL is optimized to support 100 MHz and 133 MHz frequency operation. The NB3N1900K supports HCSL output levels.

Features

- Fixed Feedback Path for Lowest Input-to-Output Delay
- Eight Dedicated OE# Pins for Hardware Control of Outputs
- PLL Bypass Configurable for PLL or Fanout Operation
- Selectable PLL Bandwidth
- Spread Spectrum Compatible: Tracks Input Clock Spreading for Low EMI
- SMBus Programmable Configurations
- 100 MHz and 133 MHz PLL Mode to Meet the Next Generation PCIe Gen2 / Gen 3 and Intel QPI Phase Jitter
- 2 Tri-Level Addresses Selection (Nine SMBUS Addresses)
- Cycle–to–Cycle Jitter: < 50 ps
- Output-to-Output Skew: < 65 ps
- Input-to-Output Delay: Fixed at 0 ps
- Input-to-Output Delay Variation: < 50 ps
- Phase Jitter: PCIe Gen3 < 1 ps rms
- Phase Jitter: QPI 9.6GB/s < 0.2 ps rms
- OFN 72-pin Package, 10 mm x 10 mm
- These are Pb-Free Devices

ON Semiconductor®

http://onsemi.com

QFN72 MN SUFFIX CASE 485DK

MARKING DIAGRAM*

NB3N 1900K AWLYYWWG

NB3N1900K = Specific Device Code

= Assembly Location

WL = Wafer Lot
YY = Year
WW = Work Week
G = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information on page 19 of this data sheet.

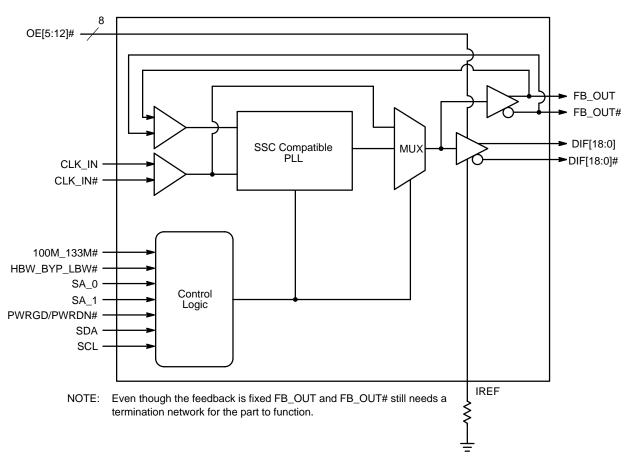
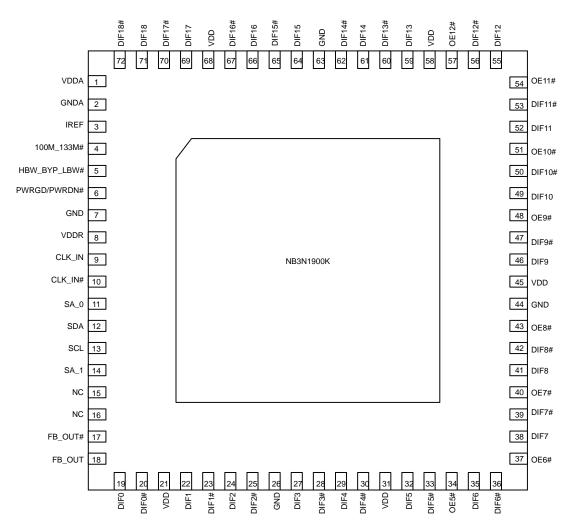



Figure 1. Simplified Block Diagram of NB3N1900K

FB_OUT pins loaded the same as the DIF outputs.

Figure 2. Pin Configuration (Top View)

Table 1. PLL OPERATING MODE READBACK TABLE

HBW_BYP_LBW#	Byte0, bit 7	Byte 0, bit 6
Low (Low BW)	0	0
Mid (Bypass)	0	1
High (High BW)	1	1

Table 2. POWER CONNECTIONS

Pin Number		
VDD	GND	Description
1	2	Analog PLL
8	7	Analog Input
21, 31, 45, 58, 68	26, 44, 63	DIF clocks

Table 3. FUNCTIONALITY AT POWER UP (PLL MODE)

100M_133M#	CLK_IN (MHz)	DIF (MHz)
1	100.00	CLK_IN
0	133.33	CLK_IN

Table 4. NB3N1900K SMBus ADDRESSING

P	in	SMBus Address – 8 bit
SA_1	SA_0	(Rd/Wrt bit = 0)
0	0	D8
0	М	DA
0	1	DE
М	0	C2
М	М	C4
М	1	C6
1	0	CA
1	М	CC
1	1	CE

Table 5. PLL OPERATING MODE

HBW_BYP_LBW#	MODE
Low	PLL Lo BW
Mid	Bypass
High	PLL Hi BW

NOTE: PLL is OFF in Bypass

Table 6. MODE TRI-LEVEL INPUT THRESHOLD

Level	Voltage
Low	< 0.8 V
Mid	1.2 < Vin < 1.8 V
High	Vin > 2.2 V

Table 7. PIN DESCRIPTION

Pin#	Pin Name	Pin Type	Description
1	VDDA	PWR	3.3 V power for the PLL core.
2	GNDA	PWR	Ground pin for the PLL core.
3	IREF	OUT	This pin establishes the reference for the differential current–mode output pairs. It requires a fixed precision resistor to ground. 475 Ω is the standard value for 100 Ω differential impedance. Other impedances require different values. See data sheet.
4	100M_133M#	IN	Input to select operating frequency 1 = 100.00 MHz, 0 = 133.33 MHz
5	HBW_BYP_LBW#	IN	Trilevel input to select High BW, Bypass or Low BW mode. See PLL Operating Mode Table for Details.
6	PWRGD/PWRDN#	IN	Notifies device to sample latched inputs and start up on first high assertion, or exit Power Down Mode on subsequent assertions. Low enters Power Down Mode.
7	GND	PWR	Ground pin.
8	VDDR	PWR	3.3 V power for differential input clock (receiver). This VDD should be treated as an analog power rail and filtered appropriately.
9	CLK_IN	IN	0.7 V Differential true input
10	CLK_IN#	IN	0.7 V Differential complementary Input
11	SA_0	IN	SMBus address bit. This is a tri–level input that works in conjunction with the SA_1 to decode 1 of 9 SMBus Addresses.
12	SDA	I/O	Data pin of SMBus circuitry, 5V tolerant
13	SCL	IN	Clock pin of SMBus circuitry, 5V tolerant
14	SA_1	IN	SMBus address bit. This is a tri–level input that works in conjunction with the SA_0 to decode 1 of 9 SMBus Addresses.
15	NC	N/A	No Connection.
16	NC	N/A	No Connection.
17	FB_OUT#	OUT	Complementary half of differential feedback output, provides feedback signal to the PLL for synchronization with input clock to eliminate phase error.
18	FB_OUT	OUT	True half of differential feedback output, provides feedback signal to the PLL for synchronization with the input clock to eliminate phase error.
19	DIF0	OUT	0.7 V differential true clock output
20	DIF0#	OUT	0.7 V differential complementary clock output
21	VDD	PWR	Power supply, nominal 3.3 V
22	DIF1	OUT	0.7 V differential true clock output
23	DIF1#	OUT	0.7 V differential complementary clock output
24	DIF2	OUT	0.7 V differential true clock output
25	DIF2#	OUT	0.7 V differential complementary clock output
26	GND	PWR	Ground pin.
27	DIF3	OUT	0.7 V differential true clock output
28	DIF3#	OUT	0.7 V differential complementary clock output
29	DIF4	OUT	0.7 V differential true clock output
30	DIF4#	OUT	0.7 V differential complementary clock output
31	VDD	PWR	Power supply, nominal 3.3 V
32	DIF5	OUT	0.7 V differential true clock output
33	DIF5#	OUT	0.7 V differential complementary clock output
34	OE5#	IN	Active low input for enabling DIF pair 5. 1 = disable outputs, 0 = enable outputs
35	DIF6	OUT	0.7 V differential true clock output
36	DIF6#	OUT	0.7 V differential complementary clock output
37	OE6#	IN	Active low input for enabling DIF pair 6. 1 =disable outputs, 0 = enable outputs

Table 7. PIN DESCRIPTION

Pin #	Pin Name	Pin Type	Description
38	DIF7	OUT	0.7 V differential true clock output
39	DIF7#	OUT	0.7 V differential complementary clock output
40	OE7#	IN	Active low input for enabling DIF pair 7. 1 = disable outputs, 0 = enable outputs
41	DIF8	OUT	0.7 V differential true clock output
42	DIF8#	OUT	0.7 V differential complementary clock output
43	OE8#	IN	Active low input for enabling DIF pair 8. 1 = disable outputs, 0 = enable outputs
44	GND	PWR	Ground pin.
45	VDD	PWR	Power supply, nominal 3.3 V
46	DIF9	OUT	0.7 V differential true clock output
47	DIF9#	OUT	0.7 V differential complementary clock output
48	OE9#	IN	Active low input for enabling DIF pair 9. 1 = disable outputs, 0 = enable outputs
49	DIF10	OUT	0.7 V differential true clock output
50	DIF10#	OUT	0.7 V differential complementary clock output
51	OE10#	IN	Active low input for enabling DIF pair 10. 1 = disable outputs, 0 = enable outputs
52	DIF11	OUT	0.7 V differential true clock output
53	DIF11#	OUT	0.7 V differential complementary clock output
54	OE11#	IN	Active low input for enabling DIF pair 11. 1 = disable outputs, 0 = enable outputs
55	DIF12	OUT	0.7 V differential true clock output
56	DIF12#	OUT	0.7 V differential complementary clock output
57	OE12#	IN	Active low input for enabling DIF pair 12. 1 = disable outputs, 0 = enable outputs
58	VDD	PWR	Power supply, nominal 3.3 V
59	DIF13	OUT	0.7 V differential true clock output
60	DIF13#	OUT	0.7 V differential complementary clock output
61	DIF14	OUT	0.7 V differential true clock output
62	DIF14#	OUT	0.7 V differential complementary clock output
63	GND	PWR	Ground pin.
64	DIF15	OUT	0.7 V differential true clock output
65	DIF15#	OUT	0.7 V differential complementary clock output
66	DIF16	OUT	0.7 V differential true clock output
67	DIF16#	OUT	0.7 V differential complementary clock output
68	VDD	PWR	Power supply, nominal 3.3 V
69	DIF17	OUT	0.7 V differential true clock output
70	DIF17#	OUT	0.7 V differential complementary clock output
71	DIF18	OUT	0.7 V differential true clock output
72	DIF18#	OUT	0.7 V differential complementary clock output

Table 8. ABSOLUTE MAXIMUM RATINGS (Note 1)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DDA}	3.3 V Core Supply Voltage (Note 2)				4.6	V
V_{DD}	3.3 V Logic Supply Voltage (Note 2)				4.6	V
V _{IL}	Input Low Voltage		GND - 0.5			V
V _{IH}	Input High Voltage	Except for SMBus interface			V _{DD} + 0.5	V
V _{IHSMB}	Input High Voltage	SMBus clock and data pins			5.5	V
T _s	Storage Temperature		-65		150	°C
TJ	Junction Temperature				125	°C
T _c	Case Temperature				130	°C
ESD	ESD protection	Human Body Model	2000			V
θЈА	Thermal Resistance Junction-to-Ambient	Still air		18.1		°C/W
θЈС	Thermal Resistance Junction-to-Case			5.0		°C/W

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Guaranteed by design and characterization, not tested in production.

2. Operation under these conditions is neither implied nor guaranteed.

Table 9. ELECTRICAL CHARACTERISTICS - INPUT/SUPPLY/COMMON PARAMETERS

(V_{DD} = V_{DDA} = 3.3 V $\pm 5\%$, T_A = -10° C to $+70^{\circ}$ C), See Test Loads for Loading Conditions.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IH}	Input High Voltage	Single-ended inputs, except SMBus, low threshold and tri-level inputs (Note 3)	2		V _{DD} + 0.3	V
V _{IL}	Input Low Voltage	Single-ended inputs, except SMBus, low threshold and tri-level inputs (Note 3)	GND - 0.3		0.8	V
V _{IH_FS} (Note 4)	Input High Voltage		0.7		V _{DD} + 0.3	V
V _{IL_FS} (Note 4)	Input Low Voltage		GND - 0.3		0.35	V
I _{IN}	Input Current	Single–ended inputs, V_{IN} = GND, V_{IN} = V_{DD} (Note 3)	- 5		5	μΑ
F _{IBYP}		V _{DD} = 3.3 V, Bypass mode (Notes 3, 5 and 6)	33		400	MHz
F _{IPLL}	Input Frequency	V _{DD} = 3.3 V, 100.00 MHz PLL mode (Note 5)	99	100.00	101	MHz
F _{IPLL}		V _{DD} = 3.3 V, 133.33 MHz PLL mode (Notes 5)	132.33	133.33	134.33	MHz
L _{PIN}	Pin Inductance	(Note 3)			7	nΗ
C _{IN}		Logic Inputs, except CLK_IN (Note 3)	1.5		5	pF
C _{INDIF_IN}	Capacitance	CLK_IN differential clock inputs (Notes 3 and 7)	1.5		2.7	pF
C _{OUT}		Output pin capacitance (Note 3)			6	pF
T _{STAB}	Clk Stabilization	From V _{DD} Power–Up and after input clock stabilization or de–assertion of PD# to 1st clock (Notes 3 and 5)			1.8	ms
f	Input SS Modulation Frequency	Allowable Frequency (Triangular Modulation) (Note 3)	30		33	kHz
t _{LATOE} #	OE# Latency	DIF start after OE# assertion DIF stop after OE# de-assertion (Note 3)	4		12	cycles
t _{DRVPD}	Tdrive_PD#	DIF output enable after PD# de-assertion (Note 3)			300	μs
t _F	Tfall	Fall time of control inputs (Notes 3 and 5)			5	ns
t _R	Trise	Rise time of control inputs (Notes 3 and 5)			5	ns
V_{ILSMB}	SMBus Input Low Voltage	(Note 3)			0.8	V
V _{IHSMB}	SMBus Input High Voltage	(Note 3)	2.1		V_{DDSMB}	V
V _{OLSMB}	SMBus Output Low Voltage	@ I _{PULLUP} (Note 3)			0.4	V
I _{PULLUP}	SMBus Sink Current	@ V _{OL} (Note 3)	4			mA
V _{DDSMB}	Nominal Bus Voltage	3 V to 5 V ±10% (Note 3)	2.7		5.5	V
t _{RSMB}	SCL/SDA Rise Time	(Max V _{IL} – 0.15) to (Min V _{IH} + 0.15) (Note 3)			1000	ns
t _{FSMB}	SCL/SDA Fall Time	(Min VIH + 0.15) to (Max V _{IL} - 0.15) (Note 3)			300	ns
f _{MAXSMB}	SMBus Operating Frequency	Maximum SMBus operating frequency (Notes 3 and 8)			100	kHz

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Guaranteed by design and characterization, not tested in production.

- 4. 100M_133M# Frequency Select (FS).
- 5. Control input must be monotonic from 20% to 80% of input swing.
- 6. Fmax measured until output violates output duty cycle specifications and output V_{High}, V_{Low} specification.
- 7. CLK_IN input
- 8. The differential input clock must be running for the SMBus to be active.

Table 10. ELECTRICAL CHARACTERISTICS - CLOCK INPUT PARAMETERS

(V_{DD} = V_{DDA} = 3.3 V \pm 5%, T_A = -10°C to +70°C), See Test Loads for Loading Conditions.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IHDIF}	Input High Voltage – CLK_IN (Note 9)	Differential inputs (single-ended measurement)	600		1150	mV
V _{ILDIF}	Input Low Voltage – CLK_IN (Note 9)	Differential inputs (single-ended measurement)	V _{SS} - 300		300	mV
V _{COM}	Input Common Mode Voltage – CLK_IN (Note 9)	Common Mode Input Voltage	300		1000	mV
V _{SWING}	Input Amplitude – CLK_IN (Note 9)	Peak to Peak value	300		1450	mV
dv/dt	Input Slew Rate – CLK_IN (Notes 9 and 10)	Measured differentially	0.4		8	V/ns
I _{IN}	Input Leakage Current (Note 9)	$V_{IN} = V_{DD}, V_{IN} = GND$	-5		5	μΑ
d _{tin}	Input Duty Cycle (Note 9)	Measurement from differential waveform	45		55	%
J _{DIFIn}	Input Jitter - Cycle to Cycle (Note 9)	Differential Measurement	0		125	ps

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Table 11. ELECTRICAL CHARACTERISTICS - DIF 0.7 V CURRENT MODE DIFFERENTIAL OUTPUTS

 $(V_{DD} = V_{DDA} = 3.3 \text{ V} \pm 5\%$, $T_A = -10^{\circ}\text{C}$ to $+70^{\circ}\text{C}$), See Test Loads for Loading Conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
dV/dt	Slew rate (Notes 11, 12 and 13)	Scope averaging on	1		4	V/ns
∆dV/dt	Slew rate matching (Notes 11, 12 and 14)	Slew rate matching, Scope averaging on			20	%
ΔTrf	Rise/Fall Time Matching (Notes 11, 12 and 18)	Rise/fall matching, Scope averaging off			125	ps
V_{High}	Voltage High (Note 11)	Statistical measurement on single-ended	660		850	.,
V_{Low}	Voltage Low (Note 11)	signal using oscilloscope math function. (Scope averaging on)	-150		150	mV
V _{max}	Max Voltage (Note 11)	Measurement on single ended signal using			1150	m\/
V_{min}	Min Voltage (Note 11)	Absolute value. (Scope averaging off)	-300			mV
V_{swing}	Vswing (Notes 11 and 12)	Scope averaging off	300			mV
V _{cross_abs}	Crossing Voltage (abs) (Notes 11 and 15)	Scope averaging off	250		550	mV
ΔV_{cross}	Crossing Voltage (var) (Notes 11 and 16)	Scope averaging off			140	mV

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{9.} Guaranteed by design and characterization, not tested in production.

^{10.} Slew rate measured through ± 75 mV window centered around differential zero.

^{11.} Guaranteed by design and characterization, not tested in production. $I_{REF} = V_{DD}/(3xR_{REF})$. For $R_{REF} = 475~\Omega$ (1%), $I_{REF} = 2.32$ mA. $I_{OH} = 6$ x I_{REF} and $V_{OH} = 0.7$ V @ $Z_{O} = 50~\Omega$ (100 Ω differential impedance).

^{12.} Measured from differential waveform.

^{13.} Slew rate is measured through the Vswing voltage range centered around differential 0 V. This results in a ±150 mV window around differential 0 V.

^{14.} Matching applies to rising and falling edge rate of differential waveform. It is measured using a ±75 mV window centered on the average cross point where the clock rising meets clock# falling. The median cross point is used to calculate voltage thresholds that the oscilloscope uses to calculate the slew rate. Measurement taken using a 100 Ω differential impedance 5" trace PCB.

^{15.} Vcross is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock# falling).

^{16.} The total variation of all Vcross measurements in any particular system. Note that this is a subset of V_cross_min/max (V_cross absolute) allowed. The intent is to limit Vcross induced modulation by setting V_cross_delta to be smaller than V_cross absolute.

^{17.} Measured from single-ended waveform

^{18.} Measured with scope averaging off, using statistics function. Variation is difference between min and max.

Table 12. ELECTRICAL CHARACTERISTICS - CURRENT CONSUMPTION

 $(V_{DD} = V_{DDA} = 3.3 \text{ V} \pm 5\%$, $T_A = -10^{\circ}\text{C}$ to $+70^{\circ}\text{C}$), See Test Loads for Loading Conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{DD3.3OP}	Operating Supply Current (Note 19)	All outputs active @ 100.00 MHz, $C_L = Full\ load$			550	mA
I _{DD3.3PDZ}	Powerdown Current (Note 19)	All differential pairs tri-stated			36	mA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

19. Guaranteed by design and characterization, not tested in production.

Table 13. ELECTRICAL CHARACTERISTICS - SKEW AND DIFFERENTIAL JITTER PARAMETERS

 $(V_{DD} = V_{DDA} = 3.3 \text{ V} \pm 5\%$, $T_A = -10^{\circ}\text{C}$ to $+70^{\circ}\text{C}$), See Test Loads for Loading Conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{SPO_PLL}	CLK_IN, DIF[x:0] (Notes 20, 21, 23, 24 and 27)	Input-to-Output Skew in PLL mode nominal value @ 25°C, 3.3 V	-100		100	ps
t _{PD_BYP}	CLK_IN, DIF[x:0] (Notes 20, 21, 22, 24 and 27)	Input-to-Output Skew in Bypass mode nominal value @ 25°C, 3.3 V	2.5		4.5	ns
t _{DSPO_PLL}	CLK_IN, DIF[x:0] (Notes 20, 21, 22, 24 and 27)	Input-to-Output Skew Variation in PLL mode across voltage and temperature			100	ps
t _{DSPO_BYP}	CLK_IN, DIF[x:0] (Notes 20, 21, 22, 24 and 27)	Input–to–Output Skew Variation in Bypass mode across voltage and temperature	-250		250	ps
t _{SKEW_ALL}	DIF{x:0] (Notes 20, 21, 22 and 27)	Output-to-Output Skew across all outputs (Common to Bypass and PLL mode)			65	ps
jpeak-hibw	PLL Jitter Peaking (Notes 26 and 27)	HBW_BYP_LBW# = 1	0		2.5	dB
jpeak-lobw	PLL Jitter Peaking (Notes 26 and 27)	HBW_BYP_LBW# = 0	0		2	dB
pll _{HIBW}	PLL Bandwidth (Notes 27 and 28)	HBW_BYP_LBW# = 1	2		4	MHz
pll _{LOBW}	PLL Bandwidth (Notes 27 and 28)	HBW_BYP_LBW# = 0	0.7		1.4	MHz
t _{DC}	Duty Cycle (Notes 20 and 27)	Measured differentially, PLL Mode	45	50	55	%
t _{DCD}	Duty Cycle Distortion (Notes 20 and 29)	Measured differentially, Bypass Mode @ 100.00 MHz	-2	0	2	%
	Jitter, Cycle to cycle	PLL mode			50	ps
^t jcyc–cyc	(Notes 20, 27 and 30)	Additive Jitter in Bypass Mode			50	ps

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

- 20. Measured into fixed 2 pF load cap. Input to output skew is measured at the first output edge following the corresponding input.
- 21. Measured from differential cross-point to differential cross-point. This parameter can be tuned with external feedback path, if present.
- 22. All Bypass Mode Input-to-Output specs refer to the timing between an input edge and the specific output edge created by it.
- 23. This parameter is deterministic for a given device.
- 24. Measured with scope averaging on to find mean value. CLK_IN slew rate must be matched to DIF output slew rate.
- 25.t is the period of the input clock.
- 26. Measured as maximum pass band gain. At frequencies within the loop BW, highest point of magnification is called PLL jitter peaking.
- 27. Guaranteed by design and characterization, not tested in production.
- 28. Measured at 3 db down or half power point.
- 29. Duty cycle distortion is the difference in duty cycle between the output and the input clock when the device is operated in bypass mode. @ 100.00 MHz.
- 30. Measured from differential waveform.

Table 14. ELECTRICAL CHARACTERISTICS - PHASE JITTER PARAMETERS

 $(V_{DD} = V_{DDA} = 3.3 \text{ V} \pm 5\%$, $T_A = -10^{\circ}\text{C}$ to $+70^{\circ}\text{C}$), See Test Loads for Loading Conditions.

Symbol	Parameter	Conditions (Notes 31 and 36)	Min	Тур	Max	Unit
t _{jphPCleG1}		PCIe Gen 1 (Notes 32 and 33)		36	86	ps (p-p)
		PCIe Gen 2 Lo Band 10 kHz < f < 1.5 MHz (Note 32)			3	ps (rms)
t _{jph} PCIeG2		PCIe Gen 2 High Band 1.5 MHz < f < Nyquist (50 MHz) (Note 32)			3.1	ps (rms)
t _{jph} PCleG3	Jitter, Phase	PCIe Gen 3 (PLL BW of 2–4 MHz, CDR = 10 MHz) (Note 32)			1	ps (rms)
t _{jphQPI_} SMI		QPI & SMI (100.00 MHz or 133.33 MHz, 4.8 Gb/s, 6.4 Gb/s 12UI) (Note 34)			0.5	ps (rms)
		QPI & SMI (100.00 MHz, 8.0 Gb/s, 12UI) (Note 34)			0.3	ps (rms)
		QPI & SMI (100.00 MHz, 9.6 Gb/s, 12UI) (Note 34)			0.2	ps (rms)
t _{jphPCleG1}		PCIe Gen 1 (Notes 32 and 33)			10	ps (p-p)
		PCIe Gen 2 Lo Band 10 kHz < f < 1.5 MHz (Notes 32 and 35)			0.3	ps (rms)
t _{jphPCleG2}		PCIe Gen 2 High Band 1.5 MHz < f < Nyquist (50 MHz) (Notes 32 and 35)			0.7	ps (rms)
t _{jphPCleG3}	Additive Phase Jitter, Bypass mode	PCIe Gen 3 (PLL BW of 2–4 MHz, CDR = 10 MHz) (Notes 32 and 35)			0.3	ps (rms)
		QPI & SMI (100.00 MHz or 133.33 MHz, 4.8 Gb/s, 6.4 Gb/s 12UI) (Notes 34 and 35)			0.3	ps (rms)
t _{jphQPI_SMI}		QPI & SMI (100.00 MHz, 8.0 Gb/s, 12UI) (Notes 34 and 35)			0.1	ps (rms)
		QPI & SMI (100.00 MHz, 9.6 Gb/s, 12UI) (Notes 34 and 35)			0.1	ps (rms)

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 31.Applies to all outputs.

^{32.} See http://www.pcisig.com for complete specs

^{33.} Sample size of at least 100K cycles. This figures extrapolates to 108 ps pk-pk @ 1M cycles for a BER of 1–12. 34. Calculated from Intel-supplied Clock Jitter Tool v 1.6.3.

^{35.} For RMS figures, additive jitter is calculated by solving the following equation: (Additive jitter)² = (total jitter)² - (input jitter)² 36. Guaranteed by design and characterization, not tested in production

Table 15. CLOCK PERIODS - DIFFERENTIAL OUTPUTS WITH SPREAD SPECTRUM DISABLED

				М	easurement	Window				
		1 Clock	1us	0.1s	0.1s	0.1s	1us	1 Clock		
SSC OFF	Center Freq. MHz	AbsPer	–SSC Short–Term Average Min	– ppm Long–Term Average Min	0 ppm Period Nominal	+ ppm Long- Term Average Max	+SSC Short-Term Average Max	+c2c jitter AbsPer Max	Unit	Notes
DIE	100.00	9.94900		9.99900	10.00000	10.00100		10.05100	ns	37, 38, 39
DIF	133.33	7.44925		7.49925	7.50000	7.50075		7.55075	ns	37, 38, 40

^{37.} Guaranteed by design and characterization, not tested in production.

Table 16. CLOCK PERIODS - DIFFERENTIAL OUTPUTS WITH SPREAD SPECTRUM ENABLED

				М	easurement	Window				
		1 Clock	1us	0.1s	0.1s	0.1s	1us	1 Clock		
SSC ON	Center Freq. MHz	-c2c jitter AbsPer Min	–SSC Short–Term Average Min	– ppm Long–Term Average Min	0 ppm Period Nominal	+ ppm Long-Term Average Max	+SSC Short-Term Average Max	+c2c jitter AbsPer Max	Unit	Notes
DIF	99.75	9.94906	9.99906	10.02406	10.02506	10.02607	10.05107	10.10107	ns	41, 42, 43
DIF	133.00	7.44930	7.49930	7.51805	7.51880	7.51955	7.53830	7.58830	ns	41, 42, 44

^{41.} Guaranteed by design and characterization, not tested in production.

Table 17. POWER MANAGEMENT TABLE

Inpu	ts		Contro	l Bits/Pins		Outputs	
PWRGD/PWRDN#	CLK_IN/CLK_IN#	SMBus EN bit	OE# Pin	DIF(5:12) / DIF(5:12)#	Other DIF/ DIF#	FB_OUT / FB_OUT#	PLL State
0	Х	Х	Х	Hi-Z (Note 45)	Hi-Z (Note 45)	Hi-Z (Note 45)	OFF
		0	Х	Hi-Z (Note 45)	Hi-Z (Note 45)	Running	ON
1	Running	1	0	Running	Running	Running	ON
	rtaining	1	1	Hi-Z (Note 45)	Running	Running	ON

^{45.} Due to external pull down resistors, HI-Z results in Low/Low on the True/Complement outputs

^{38.} All Long Term Accuracy specifications are guaranteed with the assumption that the input clock complies with CK420BQ/CK410B+ accuracy requirements (±100 ppm). The 9ZX21901 itself does not contribute to ppm error.

^{39.} Driven by SRC output of main clock, 100.00 MHz PLL Mode or Bypass mode

^{40.} Driven by CPU output of main clock, 133.33 MHz PLL Mode or Bypass mode

^{42.} All Long Term Accuracy specifications are guaranteed with the assumption that the input clock complies with CK420BQ/CK410B+ accuracy requirements (±100 ppm). The 9ZX21901 itself does not contribute to ppm error.

^{43.} Driven by SRC output of main clock, 100.00 MHz PLL Mode or Bypass mode

^{44.} Driven by CPU output of main clock, 133.33 MHz PLL Mode or Bypass mode

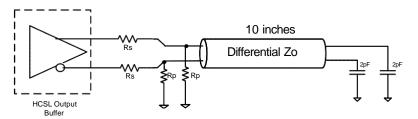


Figure 3. NB3N1900K Differential Test Loads

Table 18. DIFFERENTIAL OUTPUT TERMINATION TABLE

DIF Zo (Ω)	Iref (Ω)	Rs (Ω)	Rp (Ω)
100	475	33	50
85	412	27	42.2 or 43.2

GENERAL SMBUS SERIAL INTERFACE INFORMATION FOR THE NB3N1900K

How to Write:

- Controller (host) sends a start bit.
- Controller (host) sends the write address XX_(H)
- Clock(device) will acknowledge
- Controller (host) sends the beginning byte location = N
- Clock(device) will acknowledge
- Controller (host) sends the data byte count = X
- Clock(device) will acknowledge
- Controller (host) starts sending Byte N through Byte N+X−1
- Clock(device) will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

Table 19. INDEX BLOCK WRITE OPERATION

Controlle	r (Host)	Clock	(Device)	
Т	starT bit			
Slave Addre	ess XX _(H)			
WR	WRite			
		Į.	ACK	
Beginning l	Byte = N			
		ACK		
Data Byte 0	Count = X			
		ACK		
Beginning	Byte N			
			ACK	
]		
0		X Byte	0	
0		∧ byte	0	
			0	
Byte N +	+ X - 1			
		ACK		
Р	stoP bit	_		

Note: XX_(H) is defined by SMBus address select pins

How to Read:

- Controller (host) will send start bit.
- Controller (host) sends the write address XX_(H)
- Clock(device) will acknowledge
- Controller (host) sends the beginning byte location = N

- Clock(device) will acknowledge
- Controller (host) will send a separate start bit.
- Controller (host) sends the read address YY_(H)
- Clock(device) will acknowledge
- vclock will send the data byte count = X
- Clock(device) sends Byte N + X 1
- Clock(device) sends Byte 0 through byte X (if X_(H) was written to byte 8).
- Controller (host) will need to acknowledge each byte
- Controller (host) will send a not acknowledge bit
- Controller (host) sends a Stop bit

Table 20. INDEX BLOCK READ OPERATION

Controlle	er (Host)	Clock	k (Device)		
Т	starT bit				
Slave Add	ress XX _(H)				
WR	WRite				
			ACK		
Beginning	Byte = N				
			ACK		
RT	Repeat starT				
Slave Add	ress YY _(H)				
RD	ReaD				
		ACK			
		Data Byte Count = X			
AC	K				
			Beginning Byte N		
AC	K				
			0		
C)	X Byte	0		
C)		0		
C)				
			Byte N + X - 1		
N	Not acknowledge				
Р	stoP bit				

Note: XX_(H) is defined by SMBus address select pins

Table 21. SMBusTable: PLL MODE, AND FREQUENCY SELECT REGISTER

Byte 0	Pin#	Name	Control Function	Туре	0	0 1		
Bit 7	5	PLL Mode 1	PLL Operating Mode Rd back 1	R	See PLL Operating Mode Readback Table		Latch	
Bit 6	5	PLL Mode 0	PLL Operating Mode Rd back 0	R			Latch	
Bit 5	72/71	DIF_18_En	Output Control overrides OE# pin RW Hi–Z Enable		Enable	1		
Bit 4	70/69	DIF_17_En	Output Control overrides OE# pin	RW	Hi-Z Enable		1	
Bit 3	67/66	DIF_16_En	Output Control overrides OE# pin	RW	Hi–Z	Enable	1	
Bit 2			Reserved				0	
Bit 1			Reserved					
Bit 0	4	100M_133M#	Frequency Select Readback	Frequency Select Readback R 133 MHz 100 MHz		Latch		

Table 22. SMBusTable: OUTPUT CONTROL REGISTER

Byte 1	Pin#	Name	Control Function	Туре	0	1	Default
Bit 7	39/38	DIF_7_En	Output Control overrides OE# pin	RW			1
Bit 6	35/36	DIF_6_En	Output Control overrides OE# pin	RW			1
Bit 5	32/33	DIF_5_En	Output Control overrides OE# pin	RW		Enable	1
Bit 4	29/30	DIF_4_En	Output Control overrides OE# pin	RW	11: 7		1
Bit 3	27/28	DIF_3_En	Output Control overrides OE# pin	RW	Hi–Z		1
Bit 2	24/25	DIF_2_En	Output Control overrides OE# pin	RW			1
Bit 1	22/23	DIF_1_En	Output Control overrides OE# pin	RW	7		1
Bit 0	19/20	DIF_0_En	Output Control overrides OE# pin	RW			1

Table 23. SMBusTable: OUTPUT CONTROL REGISTER

Byte 2	Pin#	Name	Control Function	Туре	0	1	Default
Bit 7	65/64	DIF_15_En	Output Control overrides OE# pin	RW			1
Bit 6	62/61	DIF_14_En	Output Control overrides OE# pin	RW		Enable	1
Bit 5	60/59	DIF_13_En	Output Control overrides OE# pin	RW			1
Bit 4	56/55	DIF_12_En	Output Control overrides OE# pin	RW	Hi–Z		1
Bit 3	53/52	DIF_11_En	Output Control overrides OE# pin	RW	111-2	Enable	1
Bit 2	50/49	DIF_10_En	Output Control overrides OE# pin	RW			1
Bit 1	47/46	DIF_9_En	Output Control overrides OE# pin	RW			1
Bit 0	42/41	DIF_8_En	Output Control overrides OE# pin	RW			1

Table 24. SMBusTable: OUTPUT ENABLE PIN STATUS READBACK REGISTER

Byte 3	Pin#	Name	Control Function	Туре	0	1	Default
Bit 7	57	OE_RB12	Real Time readback of OE#12	R			Real time
Bit 6	54	OE_RB11	Real Time readback of OE#11	R			Real time
Bit 5	51	OE_RB10	Real Time readback of OE#10	R			Real time
Bit 4	48	OE_RB9	Real Time readback of OE#9	R	OF# =:= =	OE# Pin High	Real time
Bit 3	43	OE_RB8	Real Time readback of OE#8	R	OE# pin Low	OL# FIII TIIGIT	Real time
Bit 2	40	OE_RB7	Real Time readback of OE#7	R			Real time
Bit 1	37	OE_RB6	Real Time readback of OE#6	R			Real time
Bit 0	34	OE_RB5	Real Time readback of OE#5	R			Real time

Table 25. SMBusTable: RESERVED REGISTER

Byte 4	Pin #	Name	Control Function	Туре	0	1	Default
Bit 7	Reserved						
Bit 6		Reserved					
Bit 5		Reserved					0
Bit 4		Reserved					
Bit 3		Reserved					
Bit 2		Reserved					
Bit 1		Reserved					0
Bit 0		Reserved					0

Table 26. SMBusTable: VENDOR & REVISION ID REGISTER

Byte 5	Pin#	Name	Control Function	Туре	0	1	Default
Bit 7	-	RID3		R			Х
Bit 6	-	RID2	REVISION ID	R			Х
Bit 5	-	RID1	REVISION ID	R	-	-	Х
Bit 4	_	RID0		R			Х
Bit 3	-	VID3		R	-	-	1
Bit 2	-	VID2	VENDOR ID	R	-	-	1
Bit 1	_	VID1	VENDOR ID	R	-	-	1
Bit 0	-	VID0		R	-	-	1

Table 27. SMBusTable: DEVICE ID

Byte 6	Pin#	Name	Control Function	Туре	0	1	Default
Bit 7	-		Device ID 7 (MSB)	R		•	1
Bit 6	-	Device ID 6		R	1		1
Bit 5	-		Device ID 5	R	1		0
Bit 4	-	Device ID 4		R	Device ID is 120 decimal or		1
Bit 3	-		Device ID 3	R	78 hex.		1
Bit 2	-	Device ID 2		R	7		0
Bit 1	-	Device ID 1		R	1		1
Bit 0	-		Device ID 0	R			1

Table 28. SMBusTable: BYTE COUNT REGISTER

Byte 7	Pin #	Name	e Control Function		0	1	Default
Bit 7			Reserved		-	•	0
Bit 6			Reserved				0
Bit 5		Reserved					
Bit 4	-	BC4		RW		0	
Bit 3	-	BC3	1	RW	Default value is 8 hex, so 9 bytes (0 to 8) will be read back by default.		1
Bit 2	-	BC2	Writing to this register configures how many bytes will be read back.	RW			0
Bit 1	-	BC1	, 1,111 20 .044 540	RW			0
Bit 0	1	BC0	1	RW			0

Table 29. SMBusTable: RESERVED REGISTER

Byte 8	Pin #	Name	Control Function	Туре	0	1	Default
Bit 7		•	Reserved	•		•	0
Bit 6		Reserved					
Bit 5		Reserved					0
Bit 4		Reserved					0
Bit 3		Reserved					0
Bit 2		Reserved					
Bit 1		Reserved					0
Bit 0		Reserved					0

DIF Reference Clock							
Common Recommendations for Differential Routing	Dimension or Value	Unit					
L1 length, route as non–coupled 50 Ω trace (Figure 4)	0.5 max	inch					
L2 length, route as non–coupled 50 Ω trace (Figure 4)	0.2 max	inch					
L3 length, route as non–coupled 50 Ω trace (Figure 4)	0.2 max	inch					
Rs (Figure 4)	33	Ω					
Rt (Figure 4)	49.9	Ω					

Down Device Differential Routing		
L4 length, route as coupled microstrip 100 Ω differential trace (Figure 4)	2 min to 16 max	inch
L4 length, route as coupled stripline 100 Ω differential trace (Figure 4)	1.8 min to 14.4 max	inch

Differential Routing to PCI Express Connector		
L4 length, route as coupled microstrip 100 Ω differential trace (Figure 5)	0.25 to 14 max	inch
L4 length, route as coupled stripline 100 Ω differential trace (Figure 5)	0.225 min to 12.6 max	inch

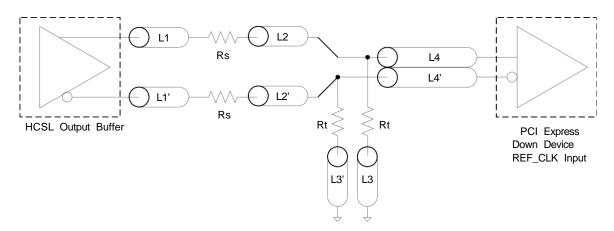


Figure 4. Down Device Routing

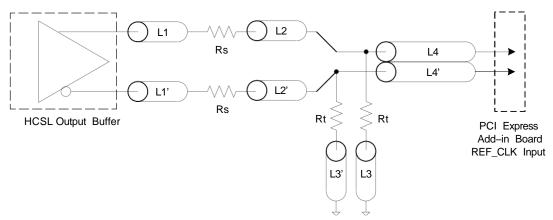


Figure 5. PCI Express Connector Routing

Table 30. ALTERNATIVE TERMINATION FOR LVDS AND OTHER COMMON DIFFERENTIAL SIGNALS (Figure 6)

Vdiff (V)	Vpp (V)	Vcm (V)	R1 (Ω)	R2 (Ω)	R3 (Ω)	R4 (Ω)	Note
0.45	0.22	1.08	33	150	100	100	
0.58	0.28	0.6	33	78.7	137	100	
0.60	0.3	1.2	33	174	140	100	Standard LVDS

R1a = R1b = R1R2a = R2b = R2

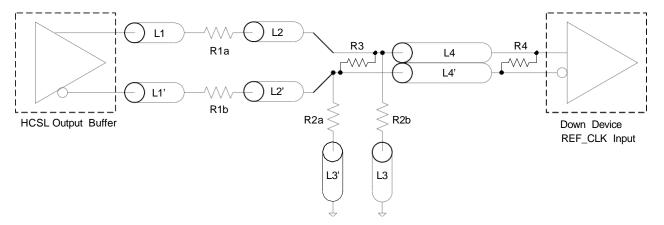


Figure 6. Alternate Termination for LVDS

Table 31. CABLE CONNECTED AC COUPLED APPLICATION (Figure 7)

Component	Value	Note
R5a, R5b	8.2k 5%	
R6a, R6b	1k 5%	
Сс	0.1 μF	
Vcm	0.350 V	

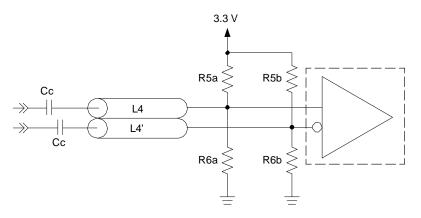


Figure 7. Cable-Connected AC Coupled Application

POWER FILTERING EXAMPLE

Ferrite Bead Power Filtering

Recommended ferrite bead filtering equivalent to the following: 600 Ω impedance at 100 MHz, \leq 0.1 Ω DCR max., \geq 800 mA current rating.

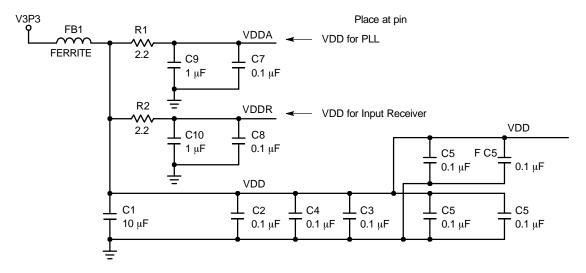
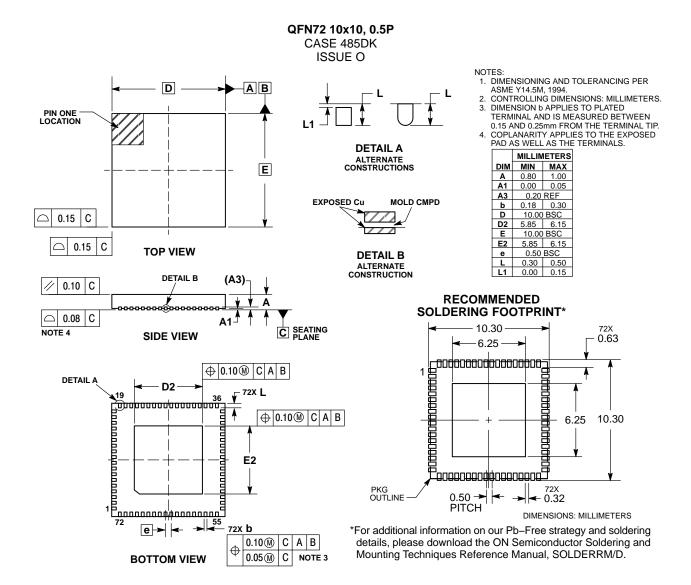


Figure 8. Schematic Example of the NB3N1900K Power Filtering


Table 32. ORDERING INFORMATION

Device	Package	Shipping [†]
NB3N1900KMNG	QFN-72 (Pb-Free)	168 Units / Tray
NB3N1900KMNTXG	QFN-72 (Pb-Free)	1000 / Tape & Reel
NB3N1900KMNTWG	QFN-72 (Pb-Free)	1000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

NOTE: Pin 1 orientation for TWG Suffix is Quadrant 1, upper left; Pin 1 orientation for TXG Suffix is Quadrant 2, upper right

PACKAGE DIMENSIONS

Intel is a registered trademark of Intel Corporation.
PCIe and PCI-SIG are registered trademarks of PCI-SIG.

ON Semiconductor and the are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada

Fax: 303-675-2176 of 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative